Sildenafil Does Not Prevent Heart Hypertrophy and Fibrosis Induced by Cardiomyocyte Angiotensin II Type 1 Receptor Signaling.

نویسندگان

  • Julia Straubinger
  • Verena Schöttle
  • Nadja Bork
  • Hariharan Subramanian
  • Sarah Dünnes
  • Michael Russwurm
  • Meinrad Gawaz
  • Andreas Friebe
  • Mona Nemer
  • Viacheslav O Nikolaev
  • Robert Lukowski
چکیده

Analyses of several mouse models imply that the phosphodiesterase 5 (PDE5) inhibitor sildenafil (SIL), via increasing cGMP, affords protection against angiotensin II (Ang II)-stimulated cardiac remodeling. However, it is unclear which cell types are involved in these beneficial effects, because Ang II may exert its adverse effects by modulating multiple renovascular and cardiac functions via Ang II type 1 receptors (AT1Rs). To test the hypothesis that SIL/cGMP inhibit cardiac stress provoked by amplified Ang II/AT1R directly in cardiomyocytes (CMs), we studied transgenic mice with CM-specific overexpression of the AT1R under the control of the α-myosin heavy chain promoter (αMHC-AT1R(tg/+)). The extent of cardiac growth was assessed in the absence or presence of SIL and defined by referring changes in heart weight to body weight or tibia length. Hypertrophic marker genes, extracellular matrix-regulating factors, and expression patterns of fibrosis markers were examined in αMHC-AT1R(tg/+) ventricles (with or without SIL) and corroborated by investigating different components of the natriuretic peptide/PDE5/cGMP pathway as well as cardiac functions. cGMP levels in heart lysates and intact CMs were measured by competitive immunoassays and Förster resonance energy transfer. We found higher cardiac and CM cGMP levels and upregulation of the cGMP-dependent protein kinase type I with AT1R overexpression. However, even a prolonged SIL treatment regimen did not limit the progressive CM growth, fibrosis, or decline in cardiac functions in the αMHC-AT1R(tg/+) model, suggesting that SIL does not interfere with the pathogenic actions of amplified AT1R signaling in CMs. Hence, the cardiac/noncardiac cells involved in the cross-talk between SIL-sensitive PDE activity and Ang II/AT1R still need to be identified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of cGMP-dependent protein kinase I (cGKI) and PDE5 in the regulation of Ang II-induced cardiac hypertrophy and fibrosis.

Conflicting results have been reported for the roles of cGMP and cGMP-dependent protein kinase I (cGKI) in various pathological conditions leading to cardiac hypertrophy and fibrosis. A cardioprotective effect of cGMP/cGKI has been reported in whole animals and isolated cardiomyocytes, but recent evidence from a mouse model expressing cGKIβ only in smooth muscle (βRM) but not in cardiomyocytes,...

متن کامل

Apoptosis signal-regulating kinase 1 plays a pivotal role in angiotensin II-induced cardiac hypertrophy and remodeling.

Multiple lines of evidence establish that angiotensin II (Ang II) induces not only hypertension but also directly contributes to cardiac diseases. Apoptosis signal-regulating kinase 1 (ASK1), one of mitogen-activated protein kinase kinase kinases, plays a key role in stress-induced cellular responses. However, nothing is known about the role of ASK1 in cardiac hypertrophy and remodeling in vivo...

متن کامل

Angiotensins and the heart: is angiotensin-(1-7) cardioprotective?

L eft ventricular hypertrophy is the most common cardiac complication of hypertension. Although the initial adaptations associated with cardiac hypertrophy are compensatory, ultimately abnormal ventricular function including diastolic dysfunction (impaired relaxation) and often heart failure may develop. 1 Activation of the renin–angiotensin system and its main effector peptide angiotensin II (...

متن کامل

Angiotensin II type-1 receptor activation in the adult heart causes blood pressure-independent hypertrophy and cardiac dysfunction.

AIMS Sustained hypertension leads to cardiac hypertrophy that can progress, through pathological remodelling, to heart failure. Abnormality of the renin-angiotensin system (RAS) has been strongly implicated in this process. Although hypertrophy in human is an established risk factor independent of blood pressure (BP), separation of remodelling in response to local cues within the differentiated...

متن کامل

Heart Targeted Expression of Receptor-Associated Late Transducer Inhibits Maladaptive Hypertrophy via Blocking Epidermal Growth Factor Receptor Signaling

Receptor-associated late transducer (RALT) is a feedback inhibitor of epidermal growth factor receptor signaling. RALT has been shown previously to be induced in the ischemic heart and to promote cardiomyocyte apoptosis in vitro. However, the role of RALT in cardiac hypertrophy remains unclear. We hypothesized that forced expression of RALT in the murine heart would protect the heart against ca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 354 3  شماره 

صفحات  -

تاریخ انتشار 2015